Dynamic algorithms for geometric spanners of small diameter: Randomized solutions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic algorithms for geometric spanners of small diameter: Randomized solutions

Let S be a set of n points in IRd and let t > 1 be a real number. A t-spanner for S is a directed graph having the points of S as its vertices, such that for any pair p and q of points there is a path from p to q of length at most t times the Euclidean distance between p and q. Such a path is called a t-spanner path. The spanner diameter of such a spanner is de ned as the smallest integer D suc...

متن کامل

Randomized and deterministic algorithms for geometric spanners of small diameter

Let S be a set of n points in IR and let t > 1 be a real number. A t-spanner for S is a directed graph having the points of S as its vertices, such that for any pair p and q of points there is a path from p to q of length at most t times the Euclidean distance between p and q. Such a path is called a t-spanner path. The spanner diameter of such a spanner is defined as the smallest integer D suc...

متن کامل

Tree spanners of small diameter

A graph that contains a spanning tree of diameter at most t clearly admits a tree t-spanner, since a tree t-spanner of a graph G is a sub tree of G such that the distance between pairs of vertices in the tree is at most t times their distance in G. In this paper, graphs that admit a tree t-spanner of diameter at most t + 1 are studied. For t equal to 1 or 2 the problem has been solved. For t = ...

متن کامل

Dynamic Algorithms for Graph Spanners

Let G = (V, E) be an undirected weighted graph on |V | = n vertices and |E| = m edges. For the graph G, A spanner with stretch t ∈ N is a subgraph (V, ES), ES ⊆ E, such that the distance between any pair of vertices in this subgraph is at most t times the distance between them in the graph G. We present simple and efficient dynamic algorithms for maintaining spanners with essentially optimal (e...

متن کامل

Geometric Spanners with Small Chromatic Number

Given an integer k ≥ 2, we consider the problem of computing the smallest real number t(k) such that for each set P of points in the plane, there exists a t(k)-spanner for P that has chromatic number at most k. We prove that t(2) = 3, t(3) = 2, t(4) = √ 2, and give upper and lower bounds on t(k) for k > 4. We also show that for any > 0, there exists a (1 + )t(k)-spanner for P that has O(|P |) e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 1999

ISSN: 0925-7721

DOI: 10.1016/s0925-7721(99)00014-0